OCR A Chemistry A-Level Module 5 - Physical Chemistry \& Transition Elements

Acids and Bases

Notes and Example Calculations
Answers given at the end of the booklet
pH Acid Calculations

Strong Acids

To calculate the pH of acids you need to know the concentration of H^{+}ions that have been dissociated. In strong acids this is straightforward because they completely dissociate. This means the concentration of the acid = concentration of H^{+}.

Once $\left[\mathrm{H}^{+}\right]$is calculated the pH can be found out by using the following equation:

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]
$$

If given the pH of the acid in solution and need to work out the concentration of the acid use this equation:

$$
\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}
$$

Example 1:

Work out the pH of $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HNO}_{3}$.
Step 1: Write the equation to work out the pH
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
Step 2: Input the concentration of the acid into the equation.

$$
\begin{aligned}
\mathrm{pH} & =-\log (0.5) \\
& =0.3
\end{aligned}
$$

Example 2:

What is the $\left[\mathrm{H}^{+}\right]$ions in $\mathrm{HCl}, \mathrm{pH} 4.3$.

Step 1: Use the correct form of the equation.
$\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$

Step 2: Input the pH value to find $\left[\mathrm{H}^{+}\right]$.

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =10^{-4.3} \\
& =\underline{\mathbf{5} .01 \times 10^{-5}}
\end{aligned}
$$

Weak Acids

Calculating the pH of weak acids is a bit more difficult as weak acids don't fully dissociate in solution. To calculate the pH of a weak acids you have to use the acid dissociation constant, Ka.

Example 3:

Write an expression for the acid dissociation constant, Ka for ethanoic acid:

$$
\mathrm{CH} 3 \mathrm{COOH} \leftrightharpoons \mathrm{CH} 3 \mathrm{COO}+\mathrm{H}^{+}
$$

[Just like Kc, and Kp expressions it is always products over reactants.]
$\mathrm{Ka}=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]$
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$

Example 4:

Calculate the pH of a $0.025 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of methanoic acid. For HCOOH , $\mathrm{Ka}=1.58 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$

$$
\mathrm{HCOOH} \leftrightharpoons \mathrm{HCOO}^{-}+\mathrm{H}^{+}
$$

Step 1: Write the Ka expression for HCOOH .

$$
\mathrm{Ka}=\frac{\left[\mathrm{HCOO}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HCOOH}]}
$$

Step 2: Rearrange the expression so that $\left[\mathrm{H}^{+}\right]$is the subject.
[The assumption here is that $\left.\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCOO}^{-}\right]\right]$
$\Rightarrow\left[\mathrm{H}^{+}\right]=\sqrt{ }(\mathrm{Ka} \times[\mathrm{HCOOH}])$

Step 3: Input the values into the equation to work out $\left[\mathrm{H}^{+}\right]$.

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =\sqrt{ }(\mathrm{Ka} \times[\mathrm{HCOOH}]) \\
& =\sqrt{ }\left(1.58 \times 10^{-4} \times 0.025\right) \\
& =1.987 \times 10^{-3}
\end{aligned}
$$

Step 4: Input the concentration of the H^{+}ions into the pH equation.

$$
\begin{aligned}
\Rightarrow \mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left(1.987 \times 10^{-3}\right) \\
& =\underline{\mathbf{2} .70}
\end{aligned}
$$

pKa is sometimes used instead of Ka to make numbers more manageable.

$$
\text { pKa }=-\log (\mathrm{Ka}) \quad \mathrm{Ka}=10^{-\mathrm{pKa}}
$$

Worked Exam Style Questions

Question 1

A solution of phenol in water has a concentration of $4.7 \mathrm{~g} \mathrm{dm}^{-3}$.
(i) Write an expression for the acid dissociation constant, K_{a}, of phenol.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}(\mathrm{aq}) \quad K_{\mathrm{a}}=1.3 \times 10^{-10} \mathrm{~mol} \mathrm{dm}^{-3}
$$

$\Rightarrow \mathrm{Ka}=\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right]$
[$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$]
(ii) Calculate the pH of this solution of phenol.

Step 1: Rearrange the Ka expression so that $\left[\mathrm{H}^{+}\right]$is the subject.
$\mathrm{Ka}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right]}$
$\Rightarrow\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(\mathrm{Ka} \times\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right]\right)$
Step 2: Change the concentration of phenol from gdm^{-3} to moldm^{-3}.
[Divide by molecular mass (remember: mass $=\mathrm{Mr} \times \mathrm{mol}$)]
Mr of phenol:
C $\times 6-12 \times 6=72$
$\mathrm{H} \times 6-6 \times 1=6$
O $\times 1-16 \times 1=16$
$\Rightarrow 72+6+16=94$
$\Rightarrow 4.7 / 94=0.05 \mathrm{~mol} \mathrm{dm}^{-3}$

Step 3: Input the values into the expression to work out $\left[\mathrm{H}^{+}\right]$.
$\left[\mathrm{H}^{+}\right]=\sqrt{ }(\mathrm{Ka} \times[\mathrm{C} 6 \mathrm{H} 5 \mathrm{OH}])$
$=\sqrt{ }\left(1.3 \times 10^{-10} \times 0.05\right)$
$=2.55 \times 10^{-6}$

Step 4: Input the concentration of the H^{+}ions into the pH equation.
$\Rightarrow \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$=-\log \left(2.55 \times 10^{-6}\right)$
$=\underline{5.59}$

Question 2
Write the expression for K_{a} for methanoic acid.
$\Rightarrow \mathrm{Ka}=\left[\mathrm{H}^{+}\right]\left[\mathrm{HCOO}^{-}\right]$
[HCOOH]

A $1.50 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ solution of HCOOH has $\left[\mathrm{H}^{+}\right]=1.55 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$.
Calculate the values of K_{a} and $\mathrm{p} K_{\mathrm{a}}$ for methanoic acid.
Step 1: Sub in the values into the Ka expression.
$\Rightarrow \mathrm{Ka}=\left[\mathrm{H}^{+}\right]^{2}$
[HCOOH$]$
$=\left(1.55 \times 10^{-3}\right)^{2} / 1.5 \times 10^{-2}$
$=1.6 \times 10^{-4}$

Step 2: Use this value to calculate pKa.

$$
\begin{aligned}
\Rightarrow \mathrm{pKa} & =-\log (\mathrm{Ka}) \\
& =-\log \left(1.6 \times 10^{-4}\right) \\
& =\underline{3.80}
\end{aligned}
$$

Estimate the percentage of HCOOH molecules that have dissociated in this aqueous solution of methanoic acid.

[Percentage dissociation $=\left(\left[\mathrm{H}^{+}\right] /\right.$concentration of the acid $\left.) \times 100\right]$
$\Rightarrow 1.55 \times 10^{-3}$
$\overline{0.015} \times 100=\underline{10.3 \%}$

Try these questions...

1.

Nitric acid, HNO_{3}, is sold by a chemical supplier as a 65% solution, by mass. As supplied, each cubic decimetre of this nitric acid has a mass of 1400 g .

Calculate the pH of this solution.
2.

This question is about the properties and reactions of ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$.
Ethanoic acid is a weak acid with an acid dissociation constant, K_{a}, of $1.75 \times 10^{-5} \mathrm{moldm}^{-3}$ at $25^{\circ} \mathrm{C}$.
(a) A student uses a pH meter to measure the pH of a solution of $\mathrm{CH}_{3} \mathrm{COOH}$ at $25^{\circ} \mathrm{C}$.

The measured pH is 2.440 .
Calculate the concentration of ethanoic acid in the solution.
Give your answer to three significant figures.

pH Base Calculations

Strong Bases

Despite being covalent, water conducts electricity to a very small extent. This is due to the slight ionisation:

$$
\mathrm{H} 2 \mathrm{O} \leftrightharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

If we write the Kc expression for this dissociation it would be like this:

$$
\mathrm{Kc}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

[H2O]

As the dissociation is small, the water concentration is very large compared with the dissociated ions and any changes to its value are insignificant, its concentration can be regarded as constant

This new constant is Kw and is equal to $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$. At room temperature Kw has a fixed value:

$$
\mathrm{Kw}=1 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}
$$

Kw which is called the ionic product of water is used to calculate the pH of an alkali.

Example 1:

Work out the pH of $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$.

Step 1: Rearrange the Kw expression so that $\left[\mathrm{H}^{+}\right]$is subject.
$\mathrm{Kw}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$
$\Rightarrow\left[\mathrm{H}^{+}\right]=\mathrm{Kw}$
[OH^{-}]

Step 2: Input values into the equation.
$\Rightarrow\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-14}}{0.05}$
$=2 \times 10^{-13} \mathrm{~mol} \mathrm{dm}^{-3}$

Step 3: Input $\left[\mathrm{H}^{+}\right]$to the pH equation.

$$
\begin{aligned}
\Rightarrow \mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left(2 \times 10^{-13}\right) \\
& =\underline{12.7}
\end{aligned}
$$

Example 2:

Calculate the pH of $0.0450 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{Ba}(\mathrm{OH})_{2}$.
Step 1: Rearrange the Kw expression so that $\left[\mathrm{H}^{+}\right]$is subject.
$\mathrm{Kw}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$
$\Rightarrow\left[\mathrm{H}^{+}\right]=\mathrm{Kw}$
[OH-]

Step 2: Input values into the equation.
$\Rightarrow\left[\mathrm{H}^{+}\right]=1 \times 10^{-14}$
(0.045 x 2)
[The concentration of the OH^{-}ions is multiplied by 2 because the ratio between barium ions and hydroxide ions is 1:2]
$\Rightarrow 1.1 \times 10^{-13} \mathrm{~mol} \mathrm{dm}^{-3}$

Step 3: Input $\left[\mathrm{H}^{+}\right]$to the pH equation.

$$
\begin{aligned}
\Rightarrow \mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left(1.1 \times 10^{-13}\right) \\
& =\underline{\mathbf{1 2 . 9 5}}
\end{aligned}
$$

Worked Exam Style Questions

Question 1

The chemist analysed a sample of water from another part of the sewage works and he found that the calcium hydroxide concentration was $2.7 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$.

When solid calcium hydroxide dissolves in water, its ions completely dissociate.

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})
$$

Calculate the pH of this sample.

Step 1: Rearrange the Kw expression so that $\left[\mathrm{H}^{+}\right]$is subject.
$\mathrm{Kw}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$
$\Rightarrow\left[\mathrm{H}^{+}\right]=\mathrm{Kw}$
[OH^{-}]

Step 2: Input values into the equation.
$\Rightarrow\left[\mathrm{H}^{+}\right]=1 \times 10^{-14}$
$\left(2.7 \times 10^{-3} \times 2\right)$
[The concentration of the OH^{-}ions is multiplied by 2 because the ratio between calcium ions and hydroxide ions is 1:2]
$\Rightarrow 1.85 \times 10^{-12} \mathrm{~mol} \mathrm{dm}^{-3}$

Step 3: Input $\left[\mathrm{H}^{+}\right]$to the pH equation.

$$
\begin{aligned}
\Rightarrow \mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left(1.85 \times 10^{-12}\right) \\
& =\underline{11.73}
\end{aligned}
$$

Try these questions...

3. A student measured the pH of a solution of sodium hydroxide as 13.54 at $25^{\circ} \mathrm{C}$.

$$
K w=1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} \text { at } 25^{\circ} \mathrm{C} .
$$

(i) Write down an expression for the ionic product, K_{w}, for water.
(ii) Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of this solution of sodium hydroxide.
4. Water dissociates slightly according to the equation:

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I})---->\quad \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

The ionic product of water, K_{w}, is given by the expression

$$
K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

K_{w} varies with temperature as shown in the table.

Temperature $/{ }^{\circ} \mathrm{C}$	$K_{\mathrm{w}} / \mathrm{mol}^{2} \mathrm{dm}^{-6}$
25	1.00×10^{-14}
50	5.48×10^{-14}

Calculate the pH of pure water at $50^{\circ} \mathrm{C}$. Give your answer to 2 decimal places.
[3 marks]

Buffers

A buffer solution minimises changes in pH during the addition of small amounts of acid or alkali. It is a mixture of weak acid and its conjugate base.

For example in a $\mathrm{CH} 3 \mathrm{COOH} / \mathrm{CH} 3 \mathrm{COONa}$ buffer system CH 3 COOH is the weak acid and the conjugate base is $\mathrm{CH}_{3} \mathrm{COO}^{-}$.

The pH of a buffer solution is affected by the acid dissociation constant Ka and the concentration ratio of the weak acid and its conjugate base.

For a buffer consisting of a weak acid, CH 3 COOH and its conjugate base, CH 3 COO :

$$
\mathrm{Ka}=\left[\mathrm{CH} 3 \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]
$$

[CH3COOH]

Example 1:

pH of buffer solution made from excess weak acid and strong base.
$50 \mathrm{~cm}^{3}$ of $0.250 \mathrm{~mol} \mathrm{dm}^{-3}$ butanoic acid added to $50 \mathrm{~cm}^{3}$ of $0.05 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide.
$\mathrm{Ka}=1.51 \times 10^{-5}$. What is the pH ?

Step 1: Write balanced equation.
$\Rightarrow \mathrm{NaOH}+\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{COOH} \rightarrow \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
Step 2: Work out the moles of NaOH (base).
[Moles = concentration x volume]
$\Rightarrow 0.05 \times(50 / 1000)=2.5 \times 10^{-3}$
Step 3: State how many moles of acid would react with this many moles of base and how many moles of salt would be formed

\Rightarrow

Step 4: Work out the moles of acid left and concentration of the buffer solution.
\Rightarrow Moles of $\mathrm{CH}_{3} \mathrm{COOH}$ at the start $=$ concentration x volume

$$
\begin{aligned}
& =(50 / 1000) \times 0.25 \\
& =0.0125
\end{aligned}
$$

Moles of acid left after reaction $=0.0125-2.5 \times 10^{-3}$

$$
=0.01
$$

Concentration of $\mathrm{CH}_{3} \mathrm{COOH}=$ moles $/$ volume $\left(\mathrm{dm}^{3}\right)$

$$
\begin{aligned}
& =0.01 / 0.1 \\
& =0.1 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

Step 5: Work out the concentration of the conjugate base $\mathrm{CH}_{3} \mathrm{COO}^{-}$.
\Rightarrow Concentration of $\mathrm{CH}_{3} \mathrm{COO}^{-}=$moles $/$volume

$$
\begin{aligned}
& =2.5 \times 10^{-3} / 0.1 \\
& =0.025 \mathrm{~mol} \mathrm{dm}^{-3}
\end{aligned}
$$

Step 6: Work out [H+].
$\mathrm{Ka}=\left[\mathrm{CH} 3 \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]$
[CH 3 COOH]

$$
\begin{aligned}
\Rightarrow\left[\mathrm{H}^{+}\right] & =\frac{\mathrm{Ka} \times[\mathrm{CH} 3 \mathrm{COOH}]}{[\mathrm{CH} 3 \mathrm{COO}]} \\
& =\frac{1.51 \times 10^{-5} \times(0.1)}{0.025} \\
& =6.04 \times 10^{-5}
\end{aligned}
$$

Step 7: Work out the pH of the buffer solution by inputting $\left[\mathrm{H}^{+}\right]$into the pH equation.

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left(6.04 \times 10^{-5}\right) \\
& =\underline{4.22}
\end{aligned}
$$

Example 2:

Calculate the pH of a buffer solution which contains the weak monoprotic acid, propanoic acid $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right)$, in concentration $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ and sodium propanoate in concentration 0.05 $\mathrm{mol} \mathrm{dm}{ }^{-3} . \mathrm{K}_{\mathrm{a}}$ of propanoic acid is $1.26 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$.

Step 1: Write the acid dissociation constant Ka expression.
$\Rightarrow \mathrm{Ka}=\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]$
$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]$
Step 2: Rearrange the Ka expression so that $[\mathrm{H}+]$ is the subject.
$\Rightarrow\left[\mathrm{H}^{+}\right]=\mathrm{Ka} \times\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right]$
$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]$

Step 3: Input the values to work out $\left[\mathrm{H}^{+}\right]$.
$\Rightarrow\left[H^{+}\right]=1.26 \times 10^{-5} \times(0.1)$
$=2.52 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$

Step 4: Work out the pH of the buffer solution.

$$
\begin{aligned}
\Rightarrow \mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left(2.52 \times 10^{-5}\right) \\
& =\underline{4.60}
\end{aligned}
$$

Worked Exam Style Questions

Question 1

A biochemist plans to make up a buffer solution with a pH of 5.000 .
The biochemist adds solid sodium ethanoate, $\mathrm{CH}_{3} \mathrm{COONa}$, to $400 \mathrm{~cm}^{3}$ of $0.200 \mathrm{moldm}^{-3}$ ethanoic acid.
K_{a} for ethanoic $\mathrm{acid}=1.75 \cdot 10^{-5} \mathrm{moldm}^{-3}$
Calculate the mass of sodium ethanoate that the biochemist needs to dissolve in the ethanoic acid to prepare this buffer solution.

Assume that the volume of the solution remains constant at $400 \mathrm{~cm}^{3}$ on dissolving the sodium ethanoate.

Step 1: Work out $\left[\mathrm{H}^{+}\right]$of the buffer solution with pH of 5.000 .
$\Rightarrow\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$

$$
=10^{-5}
$$

$$
=1 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}
$$

Step 2: Write the acid dissociation constant Ka expression.

$$
\Rightarrow \mathrm{Ka}=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]
$$

$$
\left[\mathrm{CH}_{3} \mathrm{COOH}\right]
$$

Step 3: Work out the concentration of the conjugate base by inputting the values for the corresponding substances.
$\Rightarrow\left[\mathrm{CH} 3 \mathrm{COO}^{-}\right]=\mathrm{Ka} \times[\mathrm{CH} 3 \mathrm{COOH}]$
[H^{+}]
$=1.75 \times 10^{-5} \times(0.2)$
1×10^{-5}

$$
=0.35 \mathrm{~mol} \mathrm{dm}^{-3}
$$

Step 4: Work out the number of moles the conjugate base (sodium ethanoate).
\Rightarrow Moles $=$ concentration x volume

$$
=0.35 \times(400 / 1000)
$$

$$
=0.14 \mathrm{~mol}
$$

Step 5: Work out the mass of sodium ethanoate.
[Mass = Mr x mol]
$\Rightarrow \mathrm{Mr}$ of $\mathrm{CH}_{3} \mathrm{COONa}=(12 \times 2)+(16 \times 2)+3+23=82$
$\Rightarrow 82 \times 0.14=11.48 \mathrm{~g}$

Question 2

A student prepares a buffer solution containing propanoic acid $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ and propanoate ions, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$. The concentrations of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}$are both $1.00 \mathrm{moldm}^{-3}$.

The following equilibrium is set up.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

The acid dissociation constant, K_{a}, for $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$ is $1.35 \times 10^{-5} \mathrm{moldm}^{-3}$.
(i) Calculate the pH of this buffer solution.

Step 1: Calculate the concentration of H^{+}ions.
$\Rightarrow\left[\mathrm{H}^{+}\right]=\mathrm{Ka} \times\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}\right]$
$\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$

$$
=1.35 \times 10^{-5} \times 1
$$

1
$=1.35 \times 10^{-5}$

Step 2: Work out the pH of the buffer solution.

$$
\begin{aligned}
\Rightarrow \mathrm{pH} & =-\log \left(1.35 \times 10^{-5}\right) \\
& =\underline{4.87}
\end{aligned}
$$

Question 3

The student adds 6.075 g Mg to $1.00 \mathrm{dm}^{3}$ of this buffer solution.
Calculate the pH of the new buffer solution.
Give your answer to two decimal places

Step 1: Write a balanced equation of this reaction.
$\Rightarrow \mathrm{Mg}+2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \rightarrow\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right)_{2} \mathrm{Mg}+\mathrm{H}_{2}$

Step 2: Work out the moles of magnesium added.
\Rightarrow Moles $=$ mass $/ \mathrm{Mr}$

$$
=6.075 / 24.3
$$

$$
=0.25
$$

Step 3: Work out how many moles of will react and how many moles of the salt formed using stoichiometry.

Step 4: Work out how many moles of acid/salt after the reaction:
\Rightarrow Moles of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}=1.00$.

$$
\begin{gathered}
\mathrm{Mg}+2 \mathrm{CH} 3 \mathrm{CH} 2 \mathrm{COOH} \rightarrow(\mathrm{CH} 3 \mathrm{CH} 2 \mathrm{COO})_{2} \mathrm{Mg}+\mathrm{H} 2 \\
1-(2 \times 0.25)=0.5 \mathrm{~mol} \quad 1+(2 \times 0.25)=1.5 \mathrm{~mol}
\end{gathered}
$$

For the acid you subtract 0.5 because 0.5 moles react so are used up.
For the salt 0.5 moles is added because this is the product that is made.
Step 4: Work out the concentration of the acid and conjugate base.
$[\mathrm{CH} 3 \mathrm{CH} 2 \mathrm{COOH}]=0.5 / 1=0.5 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left[\mathrm{CH} 3 \mathrm{CH}_{2} \mathrm{COO}^{-}\right]=1.5 / 1=1.5 \mathrm{~mol} \mathrm{dm}^{-3}$
Step 5: Write and rearrange the acid dissociation constant Ka expression for this reaction.
$\Rightarrow\left[\mathrm{H}^{+}\right]=\frac{\mathrm{Ka} \times[\mathrm{C} 2 \mathrm{H} 5 \mathrm{COOH}]}{\left[\mathrm{C} 2 \mathrm{H}^{\mathrm{HCOO}]}\right.}$

$$
=1.35 \times 10^{-5} \times(0.5)
$$

1.5
$=4.5 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3}$
Step 6: Work of the pH of the buffer solution using the pH equation.

$$
\begin{aligned}
\Rightarrow \mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left(4.5 \times 10^{-6}\right) \\
& =\underline{\mathbf{5 . 3 5}}
\end{aligned}
$$

Try these questions ...

5.

The student adds $50.0 \mathrm{~cm}^{3}$ of $0.250 \mathrm{moldm}^{-3}$ butanoic acid to $50.0 \mathrm{~cm}^{3}$ of $0.0500 \mathrm{moldm}^{-3}$ sodium hydroxide. A buffer solution forms.

Calculate the pH of the buffer solution.
The K_{a} of butanoic acid is $1.51 \cdot 10^{-5} \mathrm{moldm}^{-3}$.
Give your answer to two decimal places.
6.

The student plans to prepare a buffer solution that has a pH of 4.50 . The buffer solution will contain ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, and sodium ethanoate, $\mathrm{CH}_{3} \mathrm{COONa}$.

The student plans to add $9.08 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COONa}^{2} 250 \mathrm{~cm}^{3}$ of $0.800 \mathrm{moldm}^{-3} \mathrm{CH}_{3} \mathrm{COOH}$. The student assumes that the volume of the solution does not change.
(i) Show by calculation whether, or not, the student's experimental method would produce the required pH .

Show all your working.
[5 marks]

Answers

Q1.
(i) $K_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$ (1) state symbols not needed
(ii) $\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-\mathrm{pH}}=10^{-13.54}=2.88 / 2.9 \times 10^{-14} \mathrm{~mol} \mathrm{dm}^{-3}$ (1)
$[\mathrm{NaOH}] /\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}^{+}(\mathrm{aq})\right]}=\frac{1.0 \times 10^{-14}}{2.88 \times 10^{-14}}$
$=0.347 / 0.35 \mathrm{~mol} \mathrm{dm}^{-3}(\mathbf{1})$

Q2

Q3
(i) $K_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right]$ (1)
state symbols not needed
(ii) $\left[\mathrm{H}^{+}(\mathrm{aq})\right]=10^{-\mathrm{pH}}=10^{-13.54}=2.88 / 2.9 \times 10^{-14} \mathrm{~mol} \mathrm{dm}^{-3}$ (1)
$[\mathrm{NaOH}] /\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{H}^{+}(\mathrm{aq})\right]}=\frac{1.0 \times 10^{-14}}{2.88 \times 10^{-14}}$
$=0.347 / 0.35 \mathrm{~mol} \mathrm{dm}^{-3}$ (1)
2

Q4. $\left[\mathrm{H}^{+}\right]=\sqrt{ } \mathrm{K}_{\mathrm{w}}\left(\mathrm{or}=\sqrt{ } 5.48 \times 10^{-14}\right)$

Correct pH answer scores 3

If wrong method no marks
Using alternative $K_{w}\left(1.00 \times 10^{-14}\right)$ gives $\mathrm{pH}=7 . \underline{00}$ which scores 1

$$
=2.34 \times 10^{-7}
$$

$\mathrm{pH}=6.63$
Final answer must have 2dp

Q5

Question		Answer	Marks	Guidance
(c)	(ii)	```Moles (2 marks) amount \(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}=0.0100(\mathrm{~mol})\) amount \(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{-}=0.0025(\mathrm{~mol})\) Concentration (1 mark) \(\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}\right]=0.100 \mathrm{~mol} \mathrm{dm}^{-3}\) AND \(\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{-}\right]=0.025 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark\) [\(\mathrm{H}^{+}\)] and pH (2 marks) \(\left[\mathrm{H}^{+}\right]=1.51 \times 10^{-s} \times \frac{0.100}{0.025}=6.04 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\) \(\mathrm{pH}=-\log 6.04 \times 10^{-5}=4.22\) pH to 2 DP```	2	ANNOTATIONS MUST BE USED
				ALLOW HA and A^{-}throughout Mark by ECF throughout
			1	
			2	ONLY award final 2 marks via a correct pH calculation via $\mathrm{K}_{s} \times \frac{\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COO}^{-}\right]}$using data derived from that in the question (i.e. not just made up values)
		ALLOW alternative approach based on Henderson-Has $\mathrm{pH}=\mathrm{pK}_{\mathrm{s}}+\log \frac{0.025}{0.100}$ OR $\mathrm{p} K_{\mathrm{s}}-\log \frac{0.100}{0.025}$,	balch $1.82-$	quation for final 2 marks $60=4.22 \checkmark \quad \text { ALLOW }-\log K_{s} \text { for } p K_{s}$
		TAKEE CARE with awarding marks for $\mathrm{pH}=4.22$ There is a mark for the concentration stage. If this has been omitted, the ratio for the last 2 marks will be 0.0100 and 0.0025 . 4 marks max. Common errors $\mathrm{pH}=5.42$ As above for 4.22 but with acid/base ratio inverted. Award 4 OR 3 marks Award zero marks for: 4.12 from no working or random values pH value from K_{A} square root approach (weak acid pH) pH value from $K_{\mathrm{w}} / 10^{-14}$ approach (strong base pH)		Common errors $\mathrm{pH}=4.12$ use of initial concentrations: 0.250 and 0.050 given in question. Award last 3 marks for: $\begin{aligned} & 0.250 / 2 \text { AND } 0.050 / 2=0.125 \text { AND } 0.025 \\ & 1.51 \times 10^{-5} \times \frac{0.125}{0.025}=7.55 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=4.12 \end{aligned}$ Award last 2 marks for: $\mathrm{pH}=5.52$ $\begin{aligned} & 1.51 \times 10^{-5} \times \frac{0.250}{0.050}=7.55 \times 10^{-5}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & \mathrm{pH}=-\log \left[\mathrm{H}^{\prime}\right]=4.12 \end{aligned}$ As above for 4.12 but with acid/base ratio inverted. Award 2 OR 1 marks as outlined for 4.12 above

Q6.

Henderson-Hasselbalch (HH) alternative

$\mathrm{p} K_{\mathrm{a}}=-\log 1.75 \times 10^{-5}=4.757$ (or $4.756961951 .$.) $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \mathrm{oR}=\mathrm{pK}_{\mathrm{a}}-\log \frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}\right]}$

OR pK $K_{\mathrm{a}}+\log \frac{0.443}{0.800} \quad \mathrm{OR}=\mathrm{p} K_{\mathrm{a}}-\log \frac{0.800}{0.443} \checkmark$
$=\mathrm{pK} \mathrm{a}-0.257 \checkmark$
$=4.757-0.257=4.50 \checkmark$

	OR $0.111 \checkmark$
$0.111 \times 82.0=9.08(g)$	
Common errors	
4.64 Use of $M\left(\mathrm{CH}_{3} \mathrm{COONa}\right)=60$	4 marks
2.40 Use of K_{a} of $\mathrm{FCH}_{2} \mathrm{COOH}$	4 marks

